Real-time Robot Path Planning Using Experience Learning From Common Obstacle Patterns: (Extended Abstract)

نویسندگان

  • Olimpiya Saha
  • Prithviraj Dasgupta
چکیده

In this paper we investigate the problem of online robot path planning in an environment. Our main hypothesis in this paper is that the path planning times for a robot can be significantly reduced if it can refer to previous maneuvers it used to avoid collisions with common obstacles during earlier missions, and adapt that information to avoid obstacles during its current navigation. To verify this hypothesis, we propose an online path planning algorithm called LearnerRRT. Our algorithm utilizes a pattern matching technique called Sample Consensus Initial Alignment (SAC-IA) in combination with an experience based learning technique to adapt to the current scenario. We have conducted several experiments in simulations to verify the performance of LearnerRRT and compared it with a sampling-based planner Informed RRT*. Our results show that LearnerRRT performs much better than Informed RRT* in terms of planning time and total time to solve a given navigation task. When navigation times and distances traveled are explicitly compared, LearnerRRT takes slightly more navigation time and distance than Informed RRT*.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Designing Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network

In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...

متن کامل

Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance

Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...

متن کامل

Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs

In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...

متن کامل

An Advance Q Learning (AQL) Approach for Path Planning and Obstacle Avoidance of a Mobile Robot

The goal of this paper is to improve the performance of the well known Q learning algorithm, the robust technique of Machine learning to facilitate path planning in an environment. Until this time the Q learning algorithms like Classical Q learning(CQL)algorithm and Improved Q learning (IQL) algorithm deal with an environment without obstacles, while in a real environment an agent has to face o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016